
M[UMPS] (the
language) is

(nowhere near) Dead;
Long Live M[UMPS]

(the database)!

A Way for VistA to “Go” Forward

August 30, 2020

2

YottaDBⓇ – https://yottadb.com

● A mature, high performance, hierarchical key-value
NoSQL database whose code base scales up to
mission-critical applications like large real-time core-
banking and electronic health records, and also
scales down to run on platforms like the Raspberry Pi
Zero, as well as everything in-between.

● Rock Solid. Lightning Fast. Secure. Pick any three.

YottaDB is a registered trademark of YottaDB LLC

3

Cities

● Cities are never designed to become obsolete
● Julius Caeser knew London, Paris, and Rome

– But he wouldn’t recognize any of them today

● Successful cities evolve
– Those that can’t adapt, die, e.g., Copán
– Continuous evolution inevitably mixes technologies

● e.g., Fibre-optic networking with medieval sewers

4

VistA

● No planned obsolescence
– But regular attempts to kill it by starvation

● [Not unlike laying siege to a city]

● Still recognizable to its original developers
● Adaptation / evolution still in doubt

– Separating political from technical issues not simple
– Technology exists to evolve; is the political will there?

5

What Defines a City?

● Location and people
● Individuals, buildings, roads, railways, etc. are

transient

6

What Defines VistA?

● Data about people
● Individuals, interfaces, logic, etc. are transient

– Even programming languages like M[UMPS]

7

What Makes M[UMPS] Unique?

● Tight binding of database to language
● Other features are powerful, but secondary

8

M[UMPS] Challenges

● Insular community
● Frozen evolution
● Even the biggest vendor won’t call it by name
● It’s not something the next generation of

programmers wants on their resumes
– Whatever it is called
– And we’re too small a community to change that

9

Programmer Supply & Demand

Demand

Supply

Growth Factors
Salaries
Coolness factor
Use in classes

Growth Factors
New applications
Growth of existing applications
New technology

10

M[UMPS] Programmer Supply & Demand

Demand

Supply

Growth Factors
Salaries
Coolness factor
Use in classes

Growth Factors
New applications
Growth of existing applications
New technology

No evidence

Maybe in niches

11

How Do Cities Evolve?

● Build on the old and embrace the new
– With selective, geographically limited redevelopment

from time to time

● Coexistence

12

How Can VistA Evolve?

● Provide new ways to acccess and use the data
– With selective, redevelopment from time to time of

limited functional areas

● Coexistence
– Design new functionality to benefit from old

functionality and to allow old functionality to benefit
from it

13

YottaDB Approach

● Build on what works well
● Accommodate what’s new

By GT1976 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

Photos
are
almost
100
years
apart

Public domain from Wikimedia Commons

14

The YottaDB View

● The diamond is the database
● The language is what it is

– Like anchovies on pizza, you either love it or hate it

● Solution: language agnostic database
– Take nothing away from M[UMPS], the language
– Make M[UMPS], the database, accessible from other

languages

15

Additional applications

M application programs

M language subsystem

OctoⓇ SQL engine

Remote client

JDBC access

Remote
client

YottaDB
network protocol

(TCP/IP)

C language API

Language wrapper (Go, Perl, Python, Rust, ...)

C application programs

Server for client
server access

YottaDB Data-Centric Architecture

Data organization,
management, and

storage engine

16

Go

● Developed by Google and used internally
– https://golang.org

● Released as free / open source
– Active user community
– Growing popularity

● YottaDB’s first wrapper
– https://yottadb.com/yottadb-go-wrapper/

https://golang.org/

17

18

Go co-designer Rob Pike:

● https://talks.golang.org/2012/splash.article

… Go’s design considerations include rigorous
dependency management, the adaptability of software
architecture as systems grow, and robustness across the
boundaries between components. … Go is a compiled,
concurrent, garbage-collected, statically typed language
developed at Google. It is an open source project:
Google imports the public repository rather than the other
way around. .… Go is efficient, scalable, and productive.

https://talks.golang.org/2012/splash.article

19

YottaDB Go Wrapper

● CallMT, Data, Delete, DeleteExcl, Incr, Lock,
LockDecr, LockIncr, NodeNext, NodePrev, SetVal,
SubNext, SubPrev, TP, Val

● Two variants: Easy API & Simple API
– Developed in consultation with and intuitive to Go

programmers

● Full set of utility functions

20

Simulated Balance Transfers – M
baltrans(fromacct,toacct,amount)

new frombalance ; local variables used in this routine
tstart () ; no local variables to be restored on restart
set frombalance=^balance(fromacct) ; cache global in a local for performance
set:amount>frombalance $ecode=",U123," ; check for sufficient funds; raise error if not
set ^balance(fromacct)=frombalance-amount
set ^balance(toacct)=^balance(toacct)+amount
tcommit
quit

21

Simulated Balance Transfers – Go
func baltrans(fromacct string, toacct string, amount int) {
 var errstr yottadb.BufferT
 errstr.Alloc(1024)
 yottadb.TpE(yottadb.NOTTP, &errstr, func(tptoken uint64, errstr *yottadb.BufferT) int32 {
 from_balance_s, _ := yottadb.ValE(tptoken, errstr, "^balance", []string{fromacct})
 from_balance, _ := strconv.Atoi(from_balance_s)
 if amount > from_balance {
 return yottadb.YDB_TP_ROLLBACK
 }
 from_balance -= amount
 yottadb.SetValE(tptoken, errstr, fmt.Sprintf("%d", from_balance), "^balance", []string{fromacct})
 to_balance_s, _ := yottadb.ValE(tptoken, errstr, "^balance", []string{toacct})
 to_balance, _ := strconv.Atoi(to_balance_s)
 to_balance += amount
 yottadb.SetValE(tptoken, errstr, fmt.Sprintf("%d", to_balance), "^balance", []string{toacct})
 return yottadb.YDB_OK
 }, "", nil);

22

Moving Forward

● Not necessarily one correct way forward
– Doubtful that M[UMPS] can evolve its way to world

domination
– Go is promising – performance, garbage collection,

popularity, free / open source, use by Google, etc.

● To not evolve is to stagnate, and fade into
irrelevance

23

“Go”ing forward

Database

Fileman
(M)

Existing M
Application

Go
Application

24

Evolution

Database

Fileman
(M)

Existing M
Application

Go
Application

Fileman
(Go)

Mapping
Tool

25

VistA 2060?

Database

Fileman
(Specified)

Application

Fileman
(Executable)

Compiler

Thank You!
K.S. Bhaskar
bhaskar@yottadb.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

