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YottaDBⓇ – https://yottadb.com

● A mature, high performance, hierarchical key-value 
NoSQL database whose code base scales up to 
mission-critical applications like large real-time core-
banking and electronic health records, and also 
scales down to run on platforms like the Raspberry Pi 
Zero, as well as everything in-between.

● Rock Solid. Lightning Fast. Secure. Pick any three.

YottaDB is a registered trademark of YottaDB LLC
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Cities

● Cities are never designed to become obsolete
● Julius Caeser knew London, Paris, and Rome

– But he wouldn’t recognize any of them today

● Successful cities evolve
– Those that can’t adapt, die, e.g., Copán
– Continuous evolution inevitably mixes technologies

● e.g., Fibre-optic networking with medieval sewers
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VistA

● No planned obsolescence 
– But regular attempts to kill it by starvation

● [Not unlike laying siege to a city]

● Still recognizable to its original developers
● Adaptation / evolution still in doubt

– Separating political from technical issues not simple
– Technology exists to evolve; is the political will there?
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What Defines a City?

● Location and people
● Individuals, buildings, roads, railways, etc. are 

transient
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What Defines VistA?

● Data about people
● Individuals, interfaces, logic, etc. are transient

– Even programming languages like M[UMPS]
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What Makes M[UMPS] Unique?

● Tight binding of database to language
● Other features are powerful, but secondary
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M[UMPS] Challenges

● Insular community
● Frozen evolution
● Even the biggest vendor won’t call it by name
● It’s not something the next generation of 

programmers wants on their resumes
– Whatever it is called
– And we’re too small a community to change that
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Programmer Supply & Demand

Demand

Supply

Growth Factors
Salaries
Coolness factor
Use in classes

Growth Factors
New applications
Growth of existing applications
New technology
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M[UMPS] Programmer Supply & Demand

Demand

Supply

Growth Factors
Salaries
Coolness factor
Use in classes

Growth Factors
New applications
Growth of existing applications
New technology

No evidence

Maybe in niches
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How Do Cities Evolve?

● Build on the old and embrace the new
– With selective, geographically limited redevelopment 

from time to time

● Coexistence
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How Can VistA Evolve?

● Provide new ways to acccess and use the data
– With selective, redevelopment from time to time of 

limited functional areas

● Coexistence
– Design new functionality to benefit from old 

functionality and to allow old functionality to benefit 
from it
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YottaDB Approach

● Build on what works well
● Accommodate what’s new

By GT1976 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

Photos
are 
almost 
100 
years 
apart

Public domain from Wikimedia Commons
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The YottaDB View

● The diamond is the database
● The language is what it is

– Like anchovies on pizza, you either love it or hate it

● Solution: language agnostic database
– Take nothing away from M[UMPS], the language
– Make M[UMPS], the database, accessible from other 

languages
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Additional applications

M application programs

M language subsystem

OctoⓇ  SQL engine

Remote client

JDBC access

Remote  
client

YottaDB   
network protocol  

(TCP/IP)

C language API

Language wrapper (Go, Perl, Python, Rust, ...)

C application programs

Server for client  
server access

YottaDB Data-Centric Architecture

Data organization,  
management, and  

storage engine
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Go

● Developed by Google and used internally
– https://golang.org

● Released as free / open source
– Active user community
– Growing popularity

● YottaDB’s first wrapper
– https://yottadb.com/yottadb-go-wrapper/

https://golang.org/
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Go co-designer Rob Pike:

● https://talks.golang.org/2012/splash.article

… Go’s design considerations include rigorous 
dependency management, the adaptability of software 
architecture as systems grow, and robustness across the 
boundaries between components. … Go is a compiled, 
concurrent, garbage-collected, statically typed language 
developed at Google. It is an open source project: 
Google imports the public repository rather than the other 
way around. .… Go is efficient, scalable, and productive.

https://talks.golang.org/2012/splash.article
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YottaDB Go Wrapper

● CallMT, Data, Delete, DeleteExcl, Incr, Lock, 
LockDecr, LockIncr, NodeNext, NodePrev, SetVal, 
SubNext, SubPrev, TP, Val

● Two variants: Easy API & Simple API
– Developed in consultation with and intuitive to Go 

programmers

● Full set of utility functions
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Simulated Balance Transfers – M
baltrans(fromacct,toacct,amount)

new frombalance                           ; local variables used in this routine
tstart ()                                 ; no local variables to be restored on restart
set frombalance=^balance(fromacct)        ; cache global in a local for performance
set:amount>frombalance $ecode=",U123,"    ; check for sufficient funds; raise error if not
set ^balance(fromacct)=frombalance-amount
set ^balance(toacct)=^balance(toacct)+amount
tcommit
quit
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Simulated Balance Transfers – Go
func baltrans(fromacct string, toacct string, amount int) {
  var errstr yottadb.BufferT
  errstr.Alloc(1024)
  yottadb.TpE(yottadb.NOTTP, &errstr, func(tptoken uint64, errstr *yottadb.BufferT) int32 {
    from_balance_s, _ := yottadb.ValE(tptoken, errstr, "^balance", []string{fromacct})
    from_balance, _ := strconv.Atoi(from_balance_s)
    if amount > from_balance {
      return yottadb.YDB_TP_ROLLBACK
    }
    from_balance -= amount
    yottadb.SetValE(tptoken, errstr, fmt.Sprintf("%d", from_balance), "^balance", []string{fromacct})
    to_balance_s, _ := yottadb.ValE(tptoken, errstr, "^balance", []string{toacct})
    to_balance, _ := strconv.Atoi(to_balance_s)
    to_balance += amount
    yottadb.SetValE(tptoken, errstr, fmt.Sprintf("%d", to_balance), "^balance", []string{toacct})
    return yottadb.YDB_OK
  }, "", nil);
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Moving Forward

● Not necessarily one correct way forward
– Doubtful that M[UMPS] can evolve its way to world 

domination
– Go is promising – performance, garbage collection, 

popularity, free / open source, use by Google, etc.

● To not evolve is to stagnate, and fade into 
irrelevance
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“Go”ing forward

Database

Fileman
(M)

Existing M
Application

Go
Application
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Evolution

Database

Fileman
(M)

Existing M
Application

Go
Application

Fileman
(Go)

Mapping
Tool
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VistA 2060?

Database

Fileman
(Specified)

Application

Fileman
(Executable)

Compiler



Thank You!
K.S. Bhaskar
bhaskar@yottadb.com
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