
MUMPS (the
language) is

(nowhere near) Dead;
Long Live MUMPS

(the database)!

A Way for VistA to Go Forward

July 10, 2019

2

YottaDBⓇ – https://yottadb.com

● A mature, high performance, hierarchical key-value
NoSQL database whose code base scales up to
mission-critical applications like large real-time core-
banking and electronic health records, and also
scales down to run on platforms like the Raspberry Pi
Zero, as well as everything in-between.

● Rock Solid. Lightning Fast. Secure. Pick any three.

YottaDB is a registered trademark of YottaDB LLC

3

Cities

● Cities are never designed to become obsolete
● Julius Caeser knew London, Paris, and Rome

– But he wouldn’t recognize any of them today

● Successful cities evolve
– Those that can’t adapt, die, e.g., Copán
– Continuous evolution inevitably mixes technologies

● e.g., Fibre-optic networking with medieval sewers

4

VistA

● No planned obsolescence
– But regular attempts to kill it by starvation

● [Not unlike laying siege to a city]

● Still recognizable to its original developers
● Adaptation / evolution still in doubt

– Separating political from technical issues not simple
– Technology exists to evolve; is the political will there?

5

What Defines a City?

● Location and people
● Individuals, buildings, roads, railways, etc. are

transient

6

What Defines VistA?

● Data about people
● Individuals, interfaces, logic, etc. are transient

– Even programming languages like M[UMPS]

7

What Makes MUMPS Unique?

● Tight binding of database to language
● Other features are powerful, but secondary

8

What Makes MUMPS Problematic?

● Insular community
● Frozen evolution
● Even the biggest vendor won’t call it by name
● It’s not something the next generation of

programmers wants on their resumes
– And we’re too small a community to change that

9

How Do Cities Evolve?

● Build on the old and embrace the new
– With selective, geographically limited redevelopment

from time to time

● Coexistence

10

How Can VistA Evolve?

● Provide new ways to acccess and use the data
– With selective, redevelopment from time to time of

limited functional areas

● Coexistence
– Design new functionality to benefit from old

functionality and to allow old functionality to benefit
from it

11

YottaDB Approach

● Build on what works well
● Accommodate what’s new

By GT1976 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

Photos
are
almost
100
years
apart

Public domain from Wikimedia Commons

12

The YottaDB View

● The diamond is the database
● The language is what it is

– Like anchovies on pizza, you either love it or hate it

● Solution: language agnostic database
– Take nothing away from MUMPS, the language
– Make MUMPS, the database, accessible from other

languages

13

YottaDB Language
Agnostic Database

Database

MUMPS
API

C API

MUMPS
Application

C
Application

Go
Wrapper

Rust
Wrapper

Python
Wrapper

Go
Application

Nodem

Go
Wrapper

Perl
Wrapper

node.js
Application

Perl
Application

14

Go

● Developed by Google and used internally
– https://golang.org

● Released as free / open source
– Active user community
– Growing popularity

● YottaDB’s first wrapper
– https://yottadb.com/yottadb-go-wrapper/

https://golang.org/

15

Go co-designer Rob Pike:

● https://talks.golang.org/2012/splash.article

… Go’s design considerations include rigorous
dependency management, the adaptability of software
architecture as systems grow, and robustness across the
boundaries between components. … Go is a compiled,
concurrent, garbage-collected, statically typed language
developed at Google. It is an open source project:
Google imports the public repository rather than the other
way around. .… Go is efficient, scalable, and productive.

https://talks.golang.org/2012/splash.article

16

YottaDB Go Wrapper

● Data, Delete, DeleteExcl, Incr, Lock, LockDecr,
LockIncr, NodeNext, NodePrev, SetVal, SubNext,
SubPrev, TP, Val

● Two variants: Easy API & Simple API
– Developed in consultation with and intuitive to Go

programmers

● Full set of utility functions

17

Simulated Balance Transfers – M
baltrans(fromacct,toacct,amount)

new frombalance ; local variables used in thsi routine
tstart () ; no local variables to be restored on TP restart
set frombalance=^balance(fromacct) ; cache global in a local for performance
set:amount>frombalance $ecode=",U123," ; check for sufficient funds; raise error if not
set ^balance(fromacct)=frombalance-amount
set ^balance(toacct)=^balance(toacct)+amount
tcommit
quit

main new i,total
set ^balance("checking")=100
set ^balance("savings")=1000
set count=100
set total=^balance("checking")+^balance("savings")
write "Before: Checking=",^balance("checking")," Savings=",^balance("savings")," Total=",total,!
for i=1:1:count job baltrans("savings","checking",$random(10)):(error="/dev/null":output="/dev/null")
write i," jobs launched",!
set total=^balance("checking")+^balance("savings")
write "After: Checking=",^balance("checking")," Savings=",^balance("savings")," Total=",total,!
quit

18

Simulated Balance Transfers – Go
func baltrans(fromacct string, toacct string, amount int) {
 var errstr yottadb.BufferT
 errstr.Alloc(1024)
 yottadb.TpE(yottadb.NOTTP, &errstr, func(tptoken uint64, errstr *yottadb.BufferT) int32 {
 from_balance_s, _ := yottadb.ValE(tptoken, errstr, "^balance", []string{fromacct})
 from_balance, _ := strconv.Atoi(from_balance_s)
 if amount > from_balance {
 return yottadb.YDB_TP_ROLLBACK
 }
 from_balance -= amount
 yottadb.SetValE(tptoken, errstr, fmt.Sprintf("%d", from_balance), "^balance", []string{fromacct})
 to_balance_s, _ := yottadb.ValE(tptoken, errstr, "^balance", []string{toacct})
 to_balance, _ := strconv.Atoi(to_balance_s)
 to_balance += amount
 yottadb.SetValE(tptoken, errstr, fmt.Sprintf("%d", to_balance), "^balance", []string{toacct})
 return yottadb.YDB_OK
 }, "BATCH", nil);
}
func main() {
 defer yottadb.Exit()
 // Ensure ^balance("checking") and ^balance("savings") is set
 for i := 0; i < 100; i++ {
 go baltrans("checking", "savings", rand.Intn(100) - 50)
 }
}

19

Moving Forward

● Not necessarily one correct way forward
– Doubtful that MUMPS can evolve its way to world

domination
– Go is promising – performance, garbage collection,

popularity, free / open source, use by Google, etc.

● To not evolve is to stagnate, and fade into
irrelevance

Thank You!
K.S. Bhaskar
bhaskar@yottadb.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

