
What Was Old
Is New Again

June 10, 2018

2

YottaDB – https://yottadb.com

● A NoSQL database with a proven, mature code base
that both scales up to enterprise-scale applications
and scales down to the needs of embedded
systems.

● Rock Solid. Lightning Fast. Secure. Pick any three.

3

Agenda

● The Past
– Where are we and how did we get here?

● Making What was Old New Again
● The Future
● Demo

– Still a work in progress

The Past
Where are we and how did we get here?

5

The Original Computer Database

● IBM Information Management System (IMS)
● Created to manage bill of materials & inventory of

Saturn V & Apollo
– Hierarchical data model – a NoSQL database!

● First released 1966; latest release 2017
● Runs on mainframe Expen$ive⇒ Expen$ive

6

7

Massachusetts General Hospital, Boston

● Animal research laboratory circa 1966
– Limited funding for computing

● Minicomputers – spare DEC PDP-7
● Accessible talent – across the river, in Cambridge

– Massachusetts Institute of Technology
– Bolt, Beranek and Newman

8

[M]UMPS

● Massachusetts General Hospital Utility Multi-
Programming System
– Operating system + hierarchical database file system + user

interface + programming language + …
– First used 1966/67
– Ecosystem culture – user driven development; users and

developers work closely together pragmatic software ⇒ Expen$ive
without deep Computer Science theory

● Not respected by CS academia

9

Key-Value Tuples

["Capital","Belgium","Brussels"]
["Capital","Thailand","Bangkok"]
["Capital","USA","Washington,DC"]

Key

Value
Always sorted – MUMPS
means you never have to
say you’re sorting…

10

Schemaless

["Capital","Belgium","Brussels"]
["Capital","Thailand","Bangkok"]
["Capital","USA","Washington,DC"]
["Population","Belgium",13670000]
["Population","Thailand",84140000]
["Population","USA",325737000]

Schema
determined
entirely by
application –
MUMPS assigns
no meaning

Numbers and strings
(blobs) can be freely
intermixed in values
and keys except first

Default order for each key:
• Empty string ("")
• Canonical numbers in numeric order
• Strings (blobs) in lexical order

11

Mix Key Sizes

["Capital","Belgium","Brussels"]
["Capital","Thailand","Bangkok"]
["Capital","USA","Washington,DC"]
["Population","Belgium",13670000]
["Population","Thailand",84140000]
["Population","USA",325737000]
["Population","USA",17900802,3929326]
["Population","USA",18000804,5308483]
…
["Population","USA",20100401,308745538]

"Population" + 1 more key
means value is latest
population

"Population" + 2 more keys
means value is population on
date represented by last key

yyyymmdd

12

Keys Array References⟷ Array References

Population("Belgium")=13670000
Population("Thailand")=84140000
Population("USA")=325737000
Population("USA",17900802)=3929326
Population("USA",18000804)=5308483
…
Population("USA",20100401)=308745538

First key is
variable name

Other keys are
subscripts

Array references are a familiar
programming paradign

Any JSON structure is representable
as a tree, but not vice versa

13

Sharing and Persistence – Database Access

● Process private, available only for lifetime of process
 Population("Belgium")
 Population("Thailand
 Population("USA")

● Shared across processes, persistent beyond lifetime
of any process
^Population("Belgium")
^Population("Thailand")
^Population("USA")

Spot the difference?

“global” variables

“local” variables

14

Universal NoSQL

● Satisfies common major NoSQL use cases
– http://mgateway.com/docs/universalNoSQL.pdf

● NoSQL means “Not only SQL”

http://mgateway.com/docs/universalNoSQL.pdf

15

Noteworthy Features

● Tight binding of database to language
● Direct source code execution (initial implementation)
● Dynamic linking
● Multitasking
● Interactive / incremental usage
● Hierarchical locks (traffic light semantics)

16

Noteworthy Contempories

● C
● SQL
● TCP/IP
● UNIX

17

Evolution … 1

● 1970s
– Language+database separate from operating system

● 1980s (GT.M – forerunner to YottaDB)
– Programs are just text files in the file system

● Compiled to object code for execution
● While maintaining interactive / incremental usage

18

Evolution … 2

● 1990s
– ACID transactions (GT.M)
– Vendor consolidation

● Just two commercial implementations left

● 2000s
– GT.M/Linux moves to free / open source license

19

ACID Transactions

● Atomic – it all happens or none of it happens
● Consistent – logic inside a transaction cannot see

internal state of another transaction
● Isolated – no other logic can see inside this

transaction
● Durable – once committed, state change is

permanent

20

ACID Transactions in GT.M/YottaDB

● Ensuring Consistency & Isolation with high
concurrency is hard

● Optimistic Concurrency Control
– http://daslab.seas.harvard.edu/reading-group/paper

s/kung.pdf

● Achieves high levels of concurrency & scalability
– At the cost of a pathological case that application

code must avoid

http://daslab.seas.harvard.edu/reading-group/papers/kung.pdf
http://daslab.seas.harvard.edu/reading-group/papers/kung.pdf

21

GT.M/YottaDB Today

● At the heart of mission-critical applications – the
largest real-time core-banking and patient-centric
healthcare systems in the world

● But not widely used in general purpose computing

22

Why Not Widely Used … 1

● Consequences of direct execution of source code
– Needed to save memory and run fast
– Single letter abbreviations of commands, short

names

hello
 write "Hello, World!",!
 quit

hello w "Hello, World!",! q

23

Why Not Widely Used … 2

● Consequences of direct execution of source code
● Enterprise-scale applications on small computers

– Expert friendly code, e.g.
 S %P1=$S($L(%P1)>8:$E(%P1,1,8)-17000000_"."_$E(%P1,9,14),1:%P1-17000000)
 ;%P1 is now in FM format
 I %P1[".",+$P(%P1,".",2)=0 S %P1=$$FMADD(+%P1,-1)_".24"
 ;If HL7 tz and local tz are the same
 I %P2["L",%TZ=%LTZ S %P2=""
 I (%P2["U")!(%P2["L"),%P1["." D ;Build UCT from dat
 . S %=$TR(%TZ,"+-","-+") ;Reverse the sign
 . S %H=$E(%,1,3),%M=$E(%,1)_$E(%,4,5)
 . S %P1=$$FMADD(%P1,,%H,%M) Q

24

Why Not Widely Used … 3

● Consequences of direct execution of source code
● Enterprise-scale applications on small computers
● Successful applications have long lives

– Code written in the 1970s and 1980s was written to
different standards of readability than code today

– Application consistency for maintainability means
coding style lags best practices for readability

25

Why Not Widely Used … 4

● Direct execution of source code
● Enterprise-scale applications on small computers
● Successful applications have long lives
● Vendor consolidation ended language evolution &

standardization
– One vendor able to acquire all implementations

except GT.M

26

Why Not Widely Used … 5

● Direct execution of source code
● Enterprise-scale applications on small computers
● Successful applications have long lives
● Vendor consolidation ended language evolution &

standardization
● Cultural issues inside and outside community

Making What was Old New
Again

28

The Diamond is the Database

● Mature, proven code
– “Rock Solid. Lighning Fast. Secure. Pick any three.”

29

The Language is What it is

● You either love it or you hate it
– Like anchovies on your pizza
– or like emacs vs. vi[m] vs. …
– or like your religion vs. the other guy’s religion
– or…

30

YottaDB Strategy

● Build on what works well
● Accommodate what’s new

By GT1976 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

Photos
are
almost
100
years
apart

Public domain from Wikimedia Commons

From GT.M to YottaDB
Building on Strengths and

Accommodating What’s New

32

Tight Database Binding is a Strength

● Create tight binding from database to C, just like the
tight binding from database to the MUMPS language

● Make it as easy to use as any other library
source /usr/local/lib/yottadb/ydb_env_set
#include "libyottadb.h"
gcc -I $ydb_dist -L $ydb_dist -o myprog myprog.c -lyottadb
./myprog

33

Simple API – Key Functions

ydb_data_s() – determine whether node and/or subtree exist
ydb_delete_s() – delete node or both node & subtree
ydb_delete_excl_s() – delete all local variables (optionally except specified)
ydb_get_s() – get a value from a local or global variable node
ydb_node_next_s() – get next node (depth-first order)
ydb_node_previous_s() – get previous node
ydb_set_s() – set the value at a node
ydb_subscript_next_s() – get next subscript at deepest level (breadth-first order)
ydb_subscript_previous_s() – get previous subscript at deepest level
ydb_tp_s() – execute provided function with ACID transaction properties

34

Extend to Other Languages

● C is the lingua franca of computer languages
– JavaScript wrapper – next major version to use Simple API

● https://github.com/dlwicksell/nodem

– Go is coming
– SQL for reporting and to leverage other tools

● Expert-friendly FOSS SQL/JDBC engine exists; make it user
friendly

– C++, Python, Rust, Java
Driven by user input and funding

35

Extend Platforms

● Linux on 32-bit ARM
– ARMv7-A (e.g., Raspberry Pi 3, BeagleBone Black)

added 2017
– ARMv6 added 2018 (e.g., Raspberry Pi Zero)

● Linux on 64-bit ARM
– Anticipated late 2018

The Future

37

“YottaDB Everywhere”

● Footprint fits in embedded systems
● Scales up to manage very large databases
● And everything in-between
● “Rock solid. Lightning fast. Secure. Pick any three.”

Everywhere

38

YottaDB Initial Targets

● Traditional GT.M applications
– Including core banking and electronic health records

● “Big data”
– e.g., alternative to Hadoop

● Internet of Things (IoT)
– One database for the complete stack

39

Traditional – A Better GT.M … 1

● Stay upward compatible
– GT.M enhancements & fixes merged into code base

40

Close Relationship to GT.M is a Strength

GT.M versions

YottaDB releases

Migrate and merge

41

Ensuring Upward Compatibility

More than 20 years
experience working
together on GT.M

42

Traditional – A Better GT.M … 2

● GT.M enhancements & fixes merged into code base
● Performance & scalability specific to YottaDB
● Fixes specific to YottaDB

43

Big Data Approach

● Create Hadoop system from real-time banking
application
– Real time data feed replication stream Hadoop→ Hadoop
– Write queries for working application

● Replace Hadoop database & application with YottaDB
● Incrementally expand functionality to more Hadoop

applications and perhaps others (e.g., R)

44

A Picture is Worth 1E3 Words … 1

YottaDB
primary

YottaDB
secondary

Replication filter

Hadoop
system

Queries &
Updates

45

A Picture is Worth 1E3 Words .. 2

YottaDB
primary

YottaDB
secondary

Replication filter

Hadoop
system

Queries &
Updates

YottaDB
primary

46

A Picture is Worth 1E3 Words … 3

YottaDB
primary

YottaDB
secondary

Queries &
Updates

YottaDB
primary

Demo

🤞🤞🤞🤞Still a work in progress

48

Goal

● Demonstrate YottaDB as a single database used on
the edge and in the cloud

49

Internet of Things Demo – EEG Sensor

50

Internet of Things Demo – Chernoff Faces

http://mathworld.wolfram.com/ChernoffFace.html

51

Chernoff Face Reading My Mind

52

Internet of Things Demo – Block Diagram

EEG
Sensor

Raspberry
Pi Zero W

Graphing /
Monitoring

EHR

Bluetooth

Replication

Triggers

Edge

Cloud

YottaDB everywhere
except EEG sensor

53

Demo Technology – All FOSS

Application
Software

QEWD.js

Database

C API

NodeM

Browser

D3
Framework

https://github.com/dlwicksell/nodem

https://d3js.org/

http://qewdjs.com/

YottaDB

https://github.com/YottaDB/YottaDBDemos/tree/master/mindwave

54

Links

● Web site – https://yottadb.com
● Quick start –

https://docs.yottadb.com/MultiLangProgGuide/Mul
tiLangProgGuide.html#quick-start

● User documentation –
https://yottadb.com/resources/documentation/

● Blog - https://yottadb.com/blog/
● Contact – K.S. Bhaskar / bhaskar@yottadb.com

https://yottadb.com/
https://docs.yottadb.com/MultiLangProgGuide/MultiLangProgGuide.html#quick-start
https://docs.yottadb.com/MultiLangProgGuide/MultiLangProgGuide.html#quick-start
https://yottadb.com/resources/documentation/
https://yottadb.com/blog/
mailto:bhaskar@yottadb.com

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

