

June 10, 2018

What Was Old Is New Again

YottaDB – https://yottadb.com

- A NoSQL database with a proven, mature code base that both scales up to enterprise-scale applications and scales down to the needs of embedded systems.
- Rock Solid. Lightning Fast. Secure. Pick any three.

- The Past
 - Where are we and how did we get here?
- Making What was Old New Again
- The Future
- Demo
 - Still a work in progress

The Past

Where are we and how did we get here?

The Original Computer Database

- IBM Information Management System (IMS)
- Created to manage bill of materials & inventory of Saturn V & Apollo
 - Hierarchical data model a NoSQL database!
- First released 1966; latest release 2017
- Runs on mainframe ⇒ Expen\$ive

Yøtta^{DB}

Massachusetts General Hospital, Boston

- Animal research laboratory circa 1966
 - Limited funding for computing
- Minicomputers spare DEC PDP-7
- Accessible talent across the river, in Cambridge
 - Massachusetts Institute of Technology
 - Bolt, Beranek and Newman

- <u>Massachusetts General Hospital Utility Multi-</u> <u>Programming System</u>
 - Operating system + hierarchical database file system + user interface + programming language + ...
 - First used 1966/67
 - Ecosystem culture user driven development; users and developers work closely together ⇒ pragmatic software without deep Computer Science theory
 - Not respected by CS academia

Key-Value Tuples

["Capital", "Belgium", "Brussels"]
["Capital", "Thailand", "Bangkok"]
["Capital", "USA", "Washington, DC"]

Key

Value

Always sorted – MUMPS means you never have to say you're sorting...

Schemaless

["Capital", "Belgium", "Brussels"] ["Capital", "Thailand", "Bangkok"] ["Capital", "USA", "Washington, DC"] ["Population", "Belgium", 13670000] ["Population", "Thailand", 84140000] ["Population", "USA", 325737000]

Default order for each key:

- Empty string ("")
- · Canonical numbers in numeric order
- Strings (blobs) in lexical order

Schema determined entirely by application – MUMPS assigns no meaning

Numbers and strings (blobs) can be freely intermixed in values and keys except first

Mix Key Sizes


```
["Capital", "Belgium", "Brussels"]
["Capital", "Thailand", "Bangkok"]
["Capital", "USA", "Washington, DC"]
["Population", "Belgium", 13670000]
["Population", "Thailand", 84140000]
["Population", "USA", 325737000]
["Population", "USA", 17900802, 3929326]
["Population", "USA", 18000804, 5308483]
```

["Population", "USA", 20100401, 308745538]

yyyymmdd

"Population" + 1 more key means value is latest population

"Population" + 2 more keys means value is population on date represented by last key

Keys ↔ Array References

POPULATION Population("Belgium")=13670000 TREE Population("Thailand")=84140000 Population Population("USA")=325737000 Population("USA",17900802)=3929326 "Thailand" "Belaium" Population("USA", 18000804)=5308483 84140000 13670000 ... Population("USA", 20100401)=308745538 17900802 3929326 First key is Other keys are variable name subscripts

Array references are a familiar programming paradign

Any JSON structure is representable as a tree, but not vice versa

Sharing and Persistence – Database Access Yotta^{DB}

• Process private, available only for lifetime of process

Population("Belgium")
Population("Thailand
Population("USA")

"local" variables

Shared across processes, persistent beyond lifetime of any process
 ^Population("Belgium")
 ^Population("Thailand")
 *global" variables

Spot the difference?

Universal NoSQL

- Satisfies common major NoSQL use cases
 - http://mgateway.com/docs/universalNoSQL.pdf
- NoSQL means "Not only SQL"

Noteworthy Features

- Tight binding of database to language
- Direct source code execution (initial implementation)
- Dynamic linking
- Multitasking
- Interactive / incremental usage
- Hierarchical locks (traffic light semantics)

Noteworthy Contempories

- C
- SQL
- TCP/IP
- UNIX

Evolution ... 1

- 1970s
 - Language+database separate from operating system
- 1980s (GT.M forerunner to YottaDB)
 - Programs are just text files in the file system
 - Compiled to object code for execution
 - While maintaining interactive / incremental usage

Evolution ... 2

- 1990s
 - ACID transactions (GT.M)
 - Vendor consolidation
 - Just two commercial implementations left
- 2000s
 - GT.M/Linux moves to free / open source license

ACID Transactions

- Atomic it all happens or none of it happens
- Consistent logic inside a transaction cannot see internal state of another transaction
- Isolated no other logic can see inside this transaction
- Durable once committed, state change is permanent

ACID Transactions in GT.M/YottaDB

- Ensuring Consistency & Isolation with high concurrency is hard
- Optimistic Concurrency Control
 - http://daslab.seas.harvard.edu/reading-group/paper s/kung.pdf
- Achieves high levels of concurrency & scalability
 - At the cost of a pathological case that application code must avoid

GT.M/YottaDB Today

- At the heart of mission-critical applications the largest real-time core-banking and patient-centric healthcare systems in the world
- But not widely used in general purpose computing

- Consequences of direct execution of source code
 - Needed to save memory and run fast
 - Single letter abbreviations of commands, short names

```
hello
write "Hello, World!",!
quit
```

```
hello w "Hello, World!",! q
```


- Consequences of direct execution of source code
- Enterprise-scale applications on small computers
 - Expert friendly code, e.g. S %P1=\$S(\$L(%P1)>8:\$E(%P1,1,8)-1700000_"."_\$E(%P1,9,14),1:%P1-1700000) ;%P1 is now in FM format I %P1[".",+\$P(%P1,".",2)=0 S %P1=\$\$FMADD(+%P1,-1)_".24" ;If HL7 tz and local tz are the same I %P2["L",%TZ=%LTZ S %P2="" I (%P2["U")!(%P2["L"),%P1["." D ;Build UCT from dat . S %=\$TR(%TZ,"+-","-+") ;Reverse the sign . S %H=\$E(%,1,3),%M=\$E(%,1)_\$E(%,4,5) . S %P1=\$\$FMADD(%P1,,%H,%M) Q

- Consequences of direct execution of source code
- Enterprise-scale applications on small computers
- Successful applications have long lives
 - Code written in the 1970s and 1980s was written to different standards of readability than code today
 - Application consistency for maintainability means coding style lags best practices for readability

- Direct execution of source code
- Enterprise-scale applications on small computers
- Successful applications have long lives
- Vendor consolidation ended language evolution & standardization
 - One vendor able to acquire all implementations except GT.M

- Direct execution of source code
- Enterprise-scale applications on small computers
- Successful applications have long lives
- Vendor consolidation ended language evolution & standardization
- Cultural issues inside and outside community

Making What was Old New Again

The Diamond is the Database

- Mature, proven code
 - "Rock Solid. Lighning Fast. Secure. Pick any three."

The Language is What it is

- You either love it or you hate it
 - Like anchovies on your pizza
 - or like emacs vs. vi[m] vs. ...
 - or like your religion vs. the other guy's religion
 - or...

YottaDB Strategy

- Build on what works well
- Accommodate what's new

Public domain from Wikimedia Commons

Photos are almost 100 years apart

By GT1976 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

From GT.M to YottaDB

Building on Strengths and Accommodating What's New

Tight Database Binding is a Strength

- Y∕tta^{DB}
- Create tight binding from database to C, just like the tight binding from database to the MUMPS language
- Make it as easy to use as any other library source /usr/local/lib/yottadb/ydb_env_set #include "libyottadb.h" gcc -I \$ydb_dist -L \$ydb_dist -o myprog myprog.c -lyottadb ./myprog

Simple API – Key Functions

ydb_data_s() - determine whether node and/or subtree exist ydb_delete_s() - delete node or both node & subtree ydb_delete_excl_s() - delete all local variables (optionally except specified) ydb_get_s() - get a value from a local or global variable node ydb_node_next_s() - get next node (depth-first order) ydb_node_previous_s() - get previous node ydb_set_s() - set the value at a node ydb_subscript_next_s() - get next subscript at deepest level (breadth-first order) ydb_subscript_previous_s() - get previous subscript at deepest level ydb_subscript_previous_s() - get previous subscript at deepest level

Extend to Other Languages

- C is the *lingua franca* of computer languages
 - JavaScript wrapper next major version to use Simple API
 - https://github.com/dlwicksell/nodem
 - Go is coming
 - SQL for reporting and to leverage other tools
 - Expert-friendly FOSS SQL/JDBC engine exists; make it user friendly
 - C++, Python, Rust, Java

Driven by user input and funding

Extend Platforms

- Linux on 32-bit ARM
 - ARMv7-A (e.g., Raspberry Pi 3, BeagleBone Black) added 2017
 - ARMv6 added 2018 (e.g., Raspberry Pi Zero)
- Linux on 64-bit ARM
 - Anticipated late 2018

The Future

"YottaDB Everywhere"

- Footprint fits in embedded systems
- Scales up to manage very large databases
- And everything in-between

Everywhere

• "Rock solid. Lightning fast. Secure. Pick any three."

YottaDB Initial Targets

- Traditional GT.M applications
 - Including core banking and electronic health records
- "Big data"
 - e.g., alternative to Hadoop
- Internet of Things (IoT)
 - One database for the complete stack

Traditional – A Better GT.M ... 1

- Stay upward compatible
 - GT.M enhancements & fixes merged into code base

Close Relationship to GT.M is a Strength

Ensuring Upward Compatibility

More than 20 years experience working together on GT.M

Traditional – A Better GT.M ... 2

- GT.M enhancements & fixes merged into code base
- Performance & scalability specific to YottaDB
- Fixes specific to YottaDB

Big Data Approach

- Create Hadoop system from real-time banking
 application
 - Real time data feed replication stream \rightarrow Hadoop
 - Write queries for working application
- Replace Hadoop database & application with YottaDB
- Incrementally expand functionality to more Hadoop applications and perhaps others (e.g., R)

A Picture is Worth 1E3 Words ... 3

46

Demo

Still a work in progress

• Demonstrate YottaDB as a single database used on the edge and in the cloud

Internet of Things Demo – EEG Sensor

Internet of Things Demo – Chernoff Faces

Y⊚tta^{DB}

Chernoff Face Reading My Mind

Demo Technology – All FOSS

https://github.com/YottaDB/YottaDBDemos/tree/master/mindwave

- Web site https://yottadb.com
- Quick start –

https://docs.yottadb.com/MultiLangProgGuide/Mul tiLangProgGuide.html#quick-start

- User documentation –
 https://yottadb.com/resources/documentation/
- Blog https://yottadb.com/blog/
- Contact K.S. Bhaskar / bhaskar@yottadb.com

Thank You!

yottadb.com