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YottaDB – https://yottadb.com

● A NoSQL database with a proven, mature code base 
that both scales up to enterprise-scale applications 
and scales down to the needs of embedded 
systems.

● Rock Solid. Lightning Fast. Secure. Pick any three.
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Agenda

● The Past
– Where are we and how did we get here?

● Making What was Old New Again
● The Future
● Demo

– Still a work in progress



The Past
Where are we and how did we get here?
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The Original Computer Database

● IBM Information Management System (IMS)
● Created to manage bill of materials & inventory of 

Saturn V & Apollo
– Hierarchical data model – a NoSQL database!

● First released 1966; latest release 2017
● Runs on mainframe  Expen$ive⇒ Expen$ive
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Massachusetts General Hospital, Boston

● Animal research laboratory circa 1966
– Limited funding for computing

● Minicomputers – spare DEC PDP-7
● Accessible talent – across the river, in Cambridge

– Massachusetts Institute of Technology
– Bolt, Beranek and Newman
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[M]UMPS

● Massachusetts General Hospital Utility Multi-
Programming System
– Operating system + hierarchical database file system + user 

interface + programming language + … 
– First used 1966/67
– Ecosystem culture – user driven development; users and 

developers work closely together  pragmatic software ⇒ Expen$ive
without deep Computer Science theory

● Not respected by CS academia
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Key-Value Tuples

["Capital","Belgium","Brussels"]
["Capital","Thailand","Bangkok"]
["Capital","USA","Washington,DC"]

Key

Value
Always sorted – MUMPS 
means you never have to 
say you’re sorting…
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Schemaless

["Capital","Belgium","Brussels"]
["Capital","Thailand","Bangkok"]
["Capital","USA","Washington,DC"]
["Population","Belgium",13670000]
["Population","Thailand",84140000]
["Population","USA",325737000]

Schema 
determined 
entirely by 
application – 
MUMPS assigns 
no meaning

Numbers and strings 
(blobs) can be freely 
intermixed in values 
and keys except first

Default order for each key:
• Empty string ("")
• Canonical numbers in numeric order
• Strings (blobs) in lexical order
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Mix Key Sizes

["Capital","Belgium","Brussels"]
["Capital","Thailand","Bangkok"]
["Capital","USA","Washington,DC"]
["Population","Belgium",13670000]
["Population","Thailand",84140000]
["Population","USA",325737000]
["Population","USA",17900802,3929326]
["Population","USA",18000804,5308483]
…
["Population","USA",20100401,308745538]

"Population" + 1 more key 
means value is latest 
population

"Population" + 2 more keys 
means value is population on 
date represented by last key

yyyymmdd
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Keys  Array References⟷ Array References

Population("Belgium")=13670000
Population("Thailand")=84140000
Population("USA")=325737000
Population("USA",17900802)=3929326
Population("USA",18000804)=5308483
…
Population("USA",20100401)=308745538

First key is 
variable name

Other keys are 
subscripts

Array references are a familiar 
programming paradign

Any JSON structure is representable 
as a tree, but not vice versa
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Sharing and Persistence – Database Access

● Process private, available only for lifetime of process
 Population("Belgium")
 Population("Thailand
 Population("USA")

● Shared across processes, persistent beyond lifetime 
of any process
^Population("Belgium")
^Population("Thailand")
^Population("USA")

Spot the difference?

“global” variables

“local” variables
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Universal NoSQL

● Satisfies common major NoSQL use cases
– http://mgateway.com/docs/universalNoSQL.pdf

● NoSQL means “Not only SQL”

http://mgateway.com/docs/universalNoSQL.pdf
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Noteworthy Features

● Tight binding of database to language
● Direct source code execution (initial implementation)
● Dynamic linking
● Multitasking
● Interactive / incremental usage
● Hierarchical locks (traffic light semantics)
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Noteworthy Contempories

● C
● SQL
● TCP/IP
● UNIX
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Evolution … 1

● 1970s
– Language+database separate from operating system

● 1980s (GT.M – forerunner to YottaDB)
– Programs are just text files in the file system

● Compiled to object code for execution
● While maintaining interactive / incremental usage
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Evolution … 2

● 1990s
– ACID transactions (GT.M)
– Vendor consolidation

● Just two commercial implementations left

● 2000s
– GT.M/Linux moves to free / open source license
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ACID Transactions

● Atomic – it all happens or none of it happens
● Consistent – logic inside a transaction cannot see 

internal state of another transaction
● Isolated – no other logic can see inside this 

transaction 
● Durable – once committed, state change is 

permanent
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ACID Transactions in GT.M/YottaDB

● Ensuring Consistency & Isolation with high 
concurrency is hard

● Optimistic Concurrency Control
– http://daslab.seas.harvard.edu/reading-group/paper

s/kung.pdf

● Achieves high levels of concurrency & scalability
– At the cost of a pathological case that application 

code must avoid

http://daslab.seas.harvard.edu/reading-group/papers/kung.pdf
http://daslab.seas.harvard.edu/reading-group/papers/kung.pdf
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GT.M/YottaDB Today

● At the heart of mission-critical applications – the 
largest real-time core-banking and patient-centric 
healthcare systems in the world

● But not widely used in general purpose computing
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Why Not Widely Used … 1

● Consequences of direct execution of source code
– Needed to save memory and run fast
– Single letter abbreviations of commands, short 

names

hello
  write "Hello, World!",!
  quit

hello w "Hello, World!",! q
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Why Not Widely Used … 2

● Consequences of direct execution of source code
● Enterprise-scale applications on small computers

– Expert friendly code, e.g.
 S %P1=$S($L(%P1)>8:$E(%P1,1,8)-17000000_"."_$E(%P1,9,14),1:%P1-17000000)
 ;%P1 is now in FM format
 I %P1[".",+$P(%P1,".",2)=0 S %P1=$$FMADD(+%P1,-1)_".24"
 ;If HL7 tz and local tz are the same
 I %P2["L",%TZ=%LTZ S %P2=""
 I (%P2["U")!(%P2["L"),%P1["." D  ;Build UCT from dat
 . S %=$TR(%TZ,"+-","-+") ;Reverse the sign
 . S %H=$E(%,1,3),%M=$E(%,1)_$E(%,4,5)
 . S %P1=$$FMADD(%P1,,%H,%M) Q
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Why Not Widely Used … 3

● Consequences of direct execution of source code
● Enterprise-scale applications on small computers
● Successful applications have long lives

– Code written in the 1970s and 1980s was written to 
different standards of readability than code today

– Application consistency for maintainability means 
coding style lags best practices for readability
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Why Not Widely Used … 4

● Direct execution of source code
● Enterprise-scale applications on small computers
● Successful applications have long lives
● Vendor consolidation ended language evolution & 

standardization
– One vendor able to acquire all implementations 

except GT.M
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Why Not Widely Used … 5

● Direct execution of source code
● Enterprise-scale applications on small computers
● Successful applications have long lives
● Vendor consolidation ended language evolution & 

standardization
● Cultural issues inside and outside community



Making What was Old New 
Again
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The Diamond is the Database

● Mature, proven code
– “Rock Solid. Lighning Fast. Secure. Pick any three.”
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The Language is What it is

● You either love it or you hate it
– Like anchovies on your pizza
– or like emacs vs. vi[m] vs. …
– or like your religion vs. the other guy’s religion
– or…
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YottaDB Strategy

● Build on what works well
● Accommodate what’s new

By GT1976 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

Photos
are 
almost 
100 
years 
apart

Public domain from Wikimedia Commons



From GT.M to YottaDB
Building on Strengths and

Accommodating What’s New
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Tight Database Binding is a Strength

● Create tight binding from database to C, just like the 
tight binding from database to the MUMPS language

● Make it as easy to use as any other library
source /usr/local/lib/yottadb/ydb_env_set
#include "libyottadb.h"
gcc -I $ydb_dist -L $ydb_dist -o myprog myprog.c -lyottadb
./myprog
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Simple API – Key Functions

ydb_data_s() – determine whether node and/or subtree exist
ydb_delete_s() – delete node or both node & subtree
ydb_delete_excl_s() – delete all local variables (optionally except specified)
ydb_get_s() – get a value from a local or global variable node
ydb_node_next_s() – get next node (depth-first order)
ydb_node_previous_s() – get previous node
ydb_set_s() – set the value at a node
ydb_subscript_next_s() – get next subscript at deepest level (breadth-first order)
ydb_subscript_previous_s() – get previous subscript at deepest level
ydb_tp_s() – execute provided function with ACID transaction properties
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Extend to Other Languages

● C is the lingua franca of computer languages
– JavaScript wrapper – next major version to use Simple API

● https://github.com/dlwicksell/nodem

– Go is coming
– SQL for reporting and to leverage other tools

● Expert-friendly FOSS SQL/JDBC engine exists; make it user 
friendly

– C++, Python, Rust, Java 
Driven by user input and funding
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Extend Platforms

● Linux on 32-bit ARM
– ARMv7-A (e.g., Raspberry Pi 3, BeagleBone Black) 

added 2017
– ARMv6 added 2018 (e.g., Raspberry Pi Zero)

● Linux on 64-bit ARM
– Anticipated late 2018



The Future
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“YottaDB Everywhere”

● Footprint fits in embedded systems
● Scales up to manage very large databases
● And everything in-between
● “Rock solid. Lightning fast. Secure. Pick any three.” 

Everywhere



38

YottaDB Initial Targets

● Traditional GT.M applications
– Including core banking and electronic health records

● “Big data”
– e.g., alternative to Hadoop

● Internet of Things (IoT)
– One database for the complete stack
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Traditional – A Better GT.M … 1

● Stay upward compatible
– GT.M enhancements & fixes merged into code base
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Close Relationship to GT.M is a Strength

GT.M versions

YottaDB releases

Migrate and merge
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Ensuring Upward Compatibility

More than 20 years 
experience working 
together on GT.M
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Traditional – A Better GT.M … 2

● GT.M enhancements & fixes merged into code base
● Performance & scalability specific to YottaDB
● Fixes specific to YottaDB
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Big Data Approach

● Create Hadoop system from real-time banking 
application
– Real time data feed replication stream  Hadoop→ Hadoop
– Write queries for working application

● Replace Hadoop database & application with YottaDB
● Incrementally expand functionality to more Hadoop 

applications and perhaps others (e.g., R)
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A Picture is Worth 1E3 Words … 1

YottaDB
primary

YottaDB
secondary

Replication filter

Hadoop
system

Queries &
Updates
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A Picture is Worth 1E3 Words .. 2

YottaDB
primary

YottaDB
secondary

Replication filter

Hadoop
system

Queries &
Updates

YottaDB
primary
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A Picture is Worth 1E3 Words … 3

YottaDB
primary

YottaDB
secondary

Queries &
Updates

YottaDB
primary



Demo

🤞🤞🤞🤞Still a work in progress
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Goal

● Demonstrate YottaDB as a single database used on 
the edge and in the cloud



49

Internet of Things Demo – EEG Sensor
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Internet of Things Demo – Chernoff Faces

http://mathworld.wolfram.com/ChernoffFace.html
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Chernoff Face Reading My Mind
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Internet of Things Demo – Block Diagram

EEG
Sensor

Raspberry
Pi Zero W

Graphing /
Monitoring

EHR

Bluetooth

Replication

Triggers

Edge

Cloud

YottaDB everywhere 
except EEG sensor
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Demo Technology – All FOSS

Application
Software

QEWD.js

Database

C API

NodeM

Browser

D3
Framework

https://github.com/dlwicksell/nodem

https://d3js.org/

http://qewdjs.com/

YottaDB

https://github.com/YottaDB/YottaDBDemos/tree/master/mindwave
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Links

● Web site – https://yottadb.com
● Quick start – 

https://docs.yottadb.com/MultiLangProgGuide/Mul
tiLangProgGuide.html#quick-start

● User documentation – 
https://yottadb.com/resources/documentation/

● Blog - https://yottadb.com/blog/
● Contact – K.S. Bhaskar / bhaskar@yottadb.com

https://yottadb.com/
https://docs.yottadb.com/MultiLangProgGuide/MultiLangProgGuide.html#quick-start
https://docs.yottadb.com/MultiLangProgGuide/MultiLangProgGuide.html#quick-start
https://yottadb.com/resources/documentation/
https://yottadb.com/blog/
mailto:bhaskar@yottadb.com


Thank You!
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