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Agenda

● Performance – Philosophy
● Application
● Database
● Platform
● Performance – Tuning
● Questions & Discussion



Performance – Philosophy
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What is Performance?

● Maximizing logical database operations/second
– Without compromising integrity of data or persistence 

required

● Repeatable workload & repeatable computing platform
– Stable conversion between database operations and 

application metrics (throughput, response time, etc.)
– Statistical repeatability is essential, even if actual 

repeatability is hard



5

Balance

● Ultimately, something always limits throughput
– Hardware is never infinitely fast
– Application logic always has critical sections

● Balanced system – making one component (CPU, 
memory, storage) faster or adding more of it has only 
a limited effect on throughput because some other 
component will limit throughput
– Balance = cost effectiveness
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What Limits Performance … 1

● Application design and coding
– Can usually be detected outside the application
– Can sometimes be ameliorated outside the 

application … but only sometimes
– Application issues can make the fastest database and 

the fastest computer look slow
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What Limits Performance … 2

● Application design and coding
● Database configuration

– YottaDB has complete set of tools
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What Limits Performance … 3

● Application design and coding
● Database configuration
● Computing Platform

– Issues are often, but not always, visible or obvious
– Requires expertise beyond the application and 

database
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Performance is a journey, not a destination

Platform

Application

Database

Users always blame
 or credit the application
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Performance Tuning is like Cooking

● More art than science
● What is optimal for one application or even one 

configuration or one workload of an application may 
not be optimal for another

● But there are underlying principles and some 
methodology to the process



Application
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Application Design & Coding Issues

● Single-threaded calculations
● Inefficient algorithms
● Repeated calculations
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Tools to Identify Application Issues … 1

● YottaDB
– M code profiling
– $view("gblstat",region)

● TP restarts
● Lock fails

– MUPIP INTRPT & MUPIP Journal Extract
– %YGBLSTAT
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Tools to Identify Application Issues … 2

● YottaDB
● External to YottaDB (typically available using 

package manager for your Linux distribtion), e.g.
– gdb – https://www.gnu.org/software/gdb/
– Oprofile – http://oprofile.sourceforge.net/news/

https://www.gnu.org/software/gdb/
http://oprofile.sourceforge.net/news/


Database
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Database Issues

● Contention
– Pathological
– Consequential – resulting from other factors

● Excessive IO
● Memory usage
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Tools to Identify Database Issues … 1

● YottaDB
– $view("gblstat",region)

● TP restarts
● Lock fails
● Database global buffer effectiveness
● Critical section acquisition

– Database file header
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Tools to Identify Database Issues … 2

● YottaDB
● External to YottaDB

– vmstat, iostat, sar…



Platform
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Platform Issues

● Missed opportunities
– Hardware & operating systems
– Filesystems & storage
– Memory usage
– OS tuning
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Tools to Identify Platform Issues

● External to YottaDB
– With a few exceptions, outside our expertise



Performance – Tuning
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Access Methods … 1

● BG
– Traditional
– Required for encrypted databases and backward 

recovery
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Access Methods … 2

● BG
● MM

– Potentially faster
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Access Methods … 3

● BG
● MM
● Choosing

– MM (on /dev/shm) for temporary / scratch globals
– BG for encrypted globals
– Operational: MM if forward recovery is acceptable, BG 

otherwise



26

Database Fileheader Statistics

● $view("gblstat",region)
– M function accessible with standard M code

● e.g., gvstat (a personal tool, not yet supported software)

● Also accessible with DSE
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Metrics … 1a

● Identify contention with TP restarts
– Pathological

● TC0  TC1 ≅ TC1  TC2≅ TC1 
● Address with application design / changes
● Potentially ameliorate with database configuration



28

Metrics … 1b

● Identify contention with TP restarts
– Pathological

– Consequential
● Address with both application design / changes as 

well as database configuration changes
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Metrics … 1c

● Identify contention with TP restarts
– Pathological

– Consequential
– Random

● Address with database configuration changes
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Metrics … 2

● Identify contention with TP restarts
● Global buffer effectiveness

– No way to measure perfectly; proxies are
● Database blocks per global buffer
● Database operations per filesystem read

– Balance empirically
– Improve with database configuration
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Metrics … 3

● Identify contention with TP restarts
● Global buffer effectiveness
● Lock acquisition efficiency

– No way to measure perfectly; proxy is failures per 
successful acquisition

– Address with both application and database 
configuration changes
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Metrics … 4

● Identify contention with TP restarts
● Global buffer effectiveness
● Lock acquisition efficiency
● Critical section acquisition efficiency

– No way to measure perfectly; proxies are acquisition 
statistics

– Address with database configuration
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Partitioning

● Fewer regions – easier to configure & manage, more 
efficient TP commit

● More regions – easier to reorg, opportunity to design 
application for fewer collisions

● Try to keep an entire global variable in one region 
unless there is a benefit to mapping at subscript level

● Assign globals to regions for operational reasons
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Block Size

● Smaller – more efficient CPU usage, less random TP 
collision

● Bigger – potentially more efficient IO
● Choosing

– Default choice is file system block size (4KiB)
– Smaller to reduce random TP collisions
– Bigger to ensure most global nodes fit in one block
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Global Buffers vs. Filesystem Cache

● Database IO from global buffers is more efficient
● Global buffers – specific to each region
● Filesystem cache – common to all regions
● Strategy

– Ensure adequate global buffers for working set and to 
minimize TP restarts

– Balance empirically
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Journal Buffers

● Always 512 bytes, not database block size
● Ensure enough for journal records of one transaction 

including before image records
● Probably not much value in more journal buffers 

than minimum – but probably not much 
performance lost from too many

● Size generously, but don’t go overboard
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Other Journaling

● Journal sync_io
– Probably a good idea, but benchmark before using

● Epoch Taper
– Probably a good idea, but benchmark before using
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Other … 1

● Shared memory for routines
– No reason not to on current releases

● Hugepages
– No reason not to for shared memory
– Transparent hugepages – balance benefit vs. impact
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Other … 2

● Swap space – avoid configuring unless required
● Storage

– PCIeNVMe preferable to SATA
– Directly plugged in storage preferable to SAN

● Filesystems – ext4 vs. xfs vs. f2fs (where supported)
● Compare Linux distributions, especially Ubuntu vs. 

Red Hat Enterprise Linux



Questions & Discussion



Thank You!
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