
Tuning YottaDB 
Performance



2

Agenda

● Performance – Philosophy
● Application
● Database
● Platform
● Performance – Tuning
● Questions & Discussion



Performance – Philosophy



4

What is Performance?

● Maximizing logical database operations/second
– Without compromising integrity of data or persistence 

required

● Repeatable workload & repeatable computing platform
– Stable conversion between database operations and 

application metrics (throughput, response time, etc.)
– Statistical repeatability is essential, even if actual 

repeatability is hard



5

Balance

● Ultimately, something always limits throughput
– Hardware is never infinitely fast
– Application logic always has critical sections

● Balanced system – making one component (CPU, 
memory, storage) faster or adding more of it has only 
a limited effect on throughput because some other 
component will limit throughput
– Balance = cost effectiveness



6

What Limits Performance … 1

● Application design and coding
– Can usually be detected outside the application
– Can sometimes be ameliorated outside the 

application … but only sometimes
– Application issues can make the fastest database and 

the fastest computer look slow



7

What Limits Performance … 2

● Application design and coding
● Database configuration

– YottaDB has complete set of tools



8

What Limits Performance … 3

● Application design and coding
● Database configuration
● Computing Platform

– Issues are often, but not always, visible or obvious
– Requires expertise beyond the application and 

database



9

Performance is a journey, not a destination

Platform

Application

Database

Users always blame
 or credit the application



10

Performance Tuning is like Cooking

● More art than science
● What is optimal for one application or even one 

configuration or one workload of an application may 
not be optimal for another

● But there are underlying principles and some 
methodology to the process



Application



12

Application Design & Coding Issues

● Single-threaded calculations
● Inefficient algorithms
● Repeated calculations



13

Tools to Identify Application Issues … 1

● YottaDB
– M code profiling
– $view("gblstat",region)

● TP restarts
● Lock fails

– MUPIP INTRPT & MUPIP Journal Extract
– %YGBLSTAT



14

Tools to Identify Application Issues … 2

● YottaDB
● External to YottaDB (typically available using 

package manager for your Linux distribtion), e.g.
– gdb – https://www.gnu.org/software/gdb/
– Oprofile – http://oprofile.sourceforge.net/news/

https://www.gnu.org/software/gdb/
http://oprofile.sourceforge.net/news/


Database



16

Database Issues

● Contention
– Pathological
– Consequential – resulting from other factors

● Excessive IO
● Memory usage



17

Tools to Identify Database Issues … 1

● YottaDB
– $view("gblstat",region)

● TP restarts
● Lock fails
● Database global buffer effectiveness
● Critical section acquisition

– Database file header



18

Tools to Identify Database Issues … 2

● YottaDB
● External to YottaDB

– vmstat, iostat, sar…



Platform



20

Platform Issues

● Missed opportunities
– Hardware & operating systems
– Filesystems & storage
– Memory usage
– OS tuning



21

Tools to Identify Platform Issues

● External to YottaDB
– With a few exceptions, outside our expertise



Performance – Tuning



23

Access Methods … 1

● BG
– Traditional
– Required for encrypted databases and backward 

recovery



24

Access Methods … 2

● BG
● MM

– Potentially faster



25

Access Methods … 3

● BG
● MM
● Choosing

– MM (on /dev/shm) for temporary / scratch globals
– BG for encrypted globals
– Operational: MM if forward recovery is acceptable, BG 

otherwise



26

Database Fileheader Statistics

● $view("gblstat",region)
– M function accessible with standard M code

● e.g., gvstat (a personal tool, not yet supported software)

● Also accessible with DSE



27

Metrics … 1a

● Identify contention with TP restarts
– Pathological

● TC0  TC1 ≅ TC1  TC2≅ TC1 
● Address with application design / changes
● Potentially ameliorate with database configuration



28

Metrics … 1b

● Identify contention with TP restarts
– Pathological

– Consequential
● Address with both application design / changes as 

well as database configuration changes



29

Metrics … 1c

● Identify contention with TP restarts
– Pathological

– Consequential
– Random

● Address with database configuration changes



30

Metrics … 2

● Identify contention with TP restarts
● Global buffer effectiveness

– No way to measure perfectly; proxies are
● Database blocks per global buffer
● Database operations per filesystem read

– Balance empirically
– Improve with database configuration



31

Metrics … 3

● Identify contention with TP restarts
● Global buffer effectiveness
● Lock acquisition efficiency

– No way to measure perfectly; proxy is failures per 
successful acquisition

– Address with both application and database 
configuration changes



32

Metrics … 4

● Identify contention with TP restarts
● Global buffer effectiveness
● Lock acquisition efficiency
● Critical section acquisition efficiency

– No way to measure perfectly; proxies are acquisition 
statistics

– Address with database configuration



33

Partitioning

● Fewer regions – easier to configure & manage, more 
efficient TP commit

● More regions – easier to reorg, opportunity to design 
application for fewer collisions

● Try to keep an entire global variable in one region 
unless there is a benefit to mapping at subscript level

● Assign globals to regions for operational reasons



34

Block Size

● Smaller – more efficient CPU usage, less random TP 
collision

● Bigger – potentially more efficient IO
● Choosing

– Default choice is file system block size (4KiB)
– Smaller to reduce random TP collisions
– Bigger to ensure most global nodes fit in one block



35

Global Buffers vs. Filesystem Cache

● Database IO from global buffers is more efficient
● Global buffers – specific to each region
● Filesystem cache – common to all regions
● Strategy

– Ensure adequate global buffers for working set and to 
minimize TP restarts

– Balance empirically



36

Journal Buffers

● Always 512 bytes, not database block size
● Ensure enough for journal records of one transaction 

including before image records
● Probably not much value in more journal buffers 

than minimum – but probably not much 
performance lost from too many

● Size generously, but don’t go overboard



37

Other Journaling

● Journal sync_io
– Probably a good idea, but benchmark before using

● Epoch Taper
– Probably a good idea, but benchmark before using



38

Other … 1

● Shared memory for routines
– No reason not to on current releases

● Hugepages
– No reason not to for shared memory
– Transparent hugepages – balance benefit vs. impact



39

Other … 2

● Swap space – avoid configuring unless required
● Storage

– PCIeNVMe preferable to SATA
– Directly plugged in storage preferable to SAN

● Filesystems – ext4 vs. xfs vs. f2fs (where supported)
● Compare Linux distributions, especially Ubuntu vs. 

Red Hat Enterprise Linux



Questions & Discussion



Thank You!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

