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Outline

● Why NoSQL?
● Why SQL?
● How to SQL?
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What is SQL?

● Structured Query Language
– What data to get, not how to get it
– Ubiquitous for databases until NoSQL hit the streets 

in 2010’s
– Uses a relational schema; stores data in tables, tables 

can be related to each other, as indicated by a ‘key’ 
on the database
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What is SQL?

● Databases which rely on SQL as the primary means for 
accessing their data
– Oracle
– MySQL
– Postgres
– MS-SQL
– Most SQL implementations are more-or-less uniform, 

with a standards committee
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What is SQL?

● Key statement types
– SELECT – Get data from the database
– INSERT – Put data into the database
– DELETE – Remove data from the database
– UPDATE – Update data in the database

● The most interesting is SELECT
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What is SQL?

● SELECT statements look like:
– SELECT <select list> FROM <source> WHERE <condition> 

GROUP BY <columns to group by> HAVING <conditions of 
the group by> ORDER BY <columns to order by>

– <source> can be a:
● Table/View
● SELECT statement
● JOIN statement
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What is SQL?

● Joins are how we relate tables to each other
– The most simple join is a “CROSS JOIN” which:

● Creates a new table of size M x N, M is the number of 
rows in the first table and N is the number of rows in 
the second table

– Most other joins are CROSS JOINs with conditions
● INNER JOIN, NATURAL JOIN
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What is SQL?

● Joins are how we relate tables to each other
– OUTER JOINs are the other type of join

● LEFT, RIGHT, and FULL OUTER JOINs
● Ways of fetching all data from one table, and empty 

data sets from another table
● Often uses set operations (UNION, INTERSECT, 

DIFFERENCE) to construct resulting tables
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What is SQL?

● WHERE <condition>
– Conditions on the rows we select from the database
– Boolean expressions, which can contain arithmetic 

and functions
– Can contain subqueries (additional SELECT 

statements)
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What is SQL?

● Summary
– You specify what you want, and where you want it 

from
– The SQL engine decides how to fetch the data

● !! This is a hard problem!
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What is NoSQL?

● Databases that don’t require SQL statements are 
called NoSQL databases
– YottaDB
– MongoDB
– Redis
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What is NoSQL?

● Often requires the users to think about how to fetch 
the data, with unique API’s for each system

● Often has unique structure to how data is stored; 
hierarchical, JSON/BSON, graphs

● Designing the schema for a NoSQL database has a 
very different process than designing for a SQL 
database; a lot more thought about how
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What is NoSQL?

● YottaDB is a NoSQL database
– Data is stored as a hierarchy of key-value data
– i.e., [“people”, “sanchez”, “rick”, “alive”]=”?”
– Very good for data which has hierarchy
– Where in SQL you would have a related table, you 

instead represent it as a “subscript” of the parent key
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Why NoSQL?

● Performance.
– NoSQL has much less overhead in simple operations
– Programmers have total control over execution, and 

therefore total control to utilize “meta data”
– i.e., I know that there are many Rick Sanchez’s, so 

searching ones alive might be hard. Therefore, I 
maintain a cross reference of known alive people
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Why NoSQL?

● Generally, less-strict schema definitions
– A blessing and a curse
– Allows for easily adding items to the schema
– Storage is different than storing tables consisting of 

rows; in some cases, this can save space
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Why NoSQL?

● In YottaDB’s case, extremely fast transaction 
processing
– With less overhead, committing “sets” of operations is 

more straightforward
– Less overhead in tracking touched data



17

Why SQL?

● Separation of concerns
– Let the database people focus on making the 

database fast; let the application developers focus on 
making their application work

● Consistency of interfaces
– As mentioned, SQL has a fairly regular syntax across 

vendors, with some small exceptions
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Why SQL?

● Tooling
– Lots of tools connect to SQL engines and understand 

how to parse the results
● Business Intelligence
● Data Warehousing

– Adapters for every major programming language on 
the market

– Well-defined language API’s
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SQL for NoSQL?

● Critics of NoSQL predicted we would be writing SQL 
engines for our NoSQL databases
– They were right
– Consider projects like nosqlbooster, Data Virtuality, rediSQL
– And they’re cocky about it (http://www.redbook.io/all-

chapters.html)
● “Declarative queries have returned as the primary interface to 

big data, and there are efforts underway in essentially all the 
projects to start building at least a 1980’s-era optimizer”



20

SQL for NoSQL?

● YottaDB wants SQL access too!
– Customers have interest in the tools
– We have some unique things we can use which are in-line 

with recent literature in the area

● Octo
– SQL engine for accessing YottaDB datastores
– Not-yet-released; early alpha state
– Written in C, open to contributions
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How to SQL
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Octo design

● 3 main phases
– Parse expressions (we use a YACC/Bison parser)

● Once the expression is normalized, see if we can reuse a 
previously generated execution plan

– Initial optimization pass
● Resolve tables, columns, and order loops

– Physical planning
● Generate data structures that pretty much map to our 

compiled routines
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Octo design

● Running the query
– Each SQL query gets transformed to a series of M 

programs
– YottaDB knows how to compile M programs to object 

code, performance is very reasonable
– Currently, everything is executed in a single process; 

near term, we will add in ‘JOB’s to allow parallel 
evaluation where possible
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Thinking about queries

● YottaDB stores data as a hierarchy
– ^people(“sanchez”, “rick”)=”alive”
– How do we represent this as a relational schema?

● CREATE TABLE people (firstName VARCHAR KEY 
NUM “0”, lastName VARCHAR KEY NUM “1”, alive 
VARCHAR);
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Thinking about queries

● YottaDB stores data as a hierarchy
– ^people(“sanchez”, “rick”)=”alive”
– How do we represent this as a relational schema?

● 3 basic operations we must perform
– Fetching data
– Iterating ordered data
– Storing data
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Thinking about queries

● CREATE TABLE people (firstName VARCHAR KEY 
NUM “0”, lastName VARCHAR KEY NUM “1”, alive 
VARCHAR);

● How do we query against this table?
– YottaDB provides ways to fetch data (get), set data 

(set), and iterate over nodes (subscript_next)
– Some data is part of the “key” component here
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Thinking about queries

● CREATE TABLE people (firstName VARCHAR KEY 
NUM “0”, lastName VARCHAR KEY NUM “1”, alive 
VARCHAR);

SELECT * FROM people
FOR firstName in people

FOR lastName in people(firstName)
yield (firstName, lastName, 

people[firstName][lastName])
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Thinking about queries – 
Optimizations (equi join)

● SELECT * FROM people WHERE lastName = 
“Sanchez”
lastName = “Sanchez”

FOR firstName in people(lastName)
yield (lastName, firstName, people[lastName]

[firstName])
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Thinking about queries – 
Optimizations (equi join)

● What about if we condition our query on something 
that isn’t a key?

● SELECT * FROM people WHERE alive = “true”
● Option A: order over every row in the database, and 

only select those where alive = “true”
● Option B: construct a cross reference, and order over 

that instead
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Thinking about queries – 
Optimizations (equi join)

● SELECT * FROM people WHERE alive = “true”
● Cross reference looks like xref(“<table name>”,”<xref 

key>”,.. keys for table)
● i.e. xref(“people”,”true”,”sanchez”,”rick”)

FOR fn in xref(“people”, “true”)
FOR ln in xref(“people”, “true”, fn)

yield
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Good Stuff - JOINs

● This is where we do the relational bit of relation 
databases

● Let’s create a new table
– CREATE TABLE morty(id INTEGER PRIMARY KEY, 

rickLastName VARCHAR, rickFirstName VARCHAR, 
alive VARCHAR)

– rickLastName and rickFirstName are keys from the 
people table
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Good Stuff - JOINs

● Let’s fetch the rick-morty pair
– SELECT * FROM people p1 CROSS JOIN mortys m1
– Render as:

FOR fn in people
FOR ln in people(fn)

FOR id in morty
yield (...)
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Good Stuff - JOINs

● Let’s fetch the rick-morty pair
– SELECT * FROM people p1 CROSS JOIN mortys m1

WHERE p1.firstName = m1.firstName
AND p1.lastName = m1.lastName

– Render as:
FOR fn in people FOR ln in people(fn)

mln = ln; mfn = fn;
yield
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Good Stuff – SET operations

● UNION, INTERSECT, and EXCEPT
– UNION is easy; just combine the output of two 

statements and remove duplicates
– In YottaDB, we can maintain an output key and only 

add something to it if it doesn’t exist
– To get ordering correct, we can use a cross reference

● i.e. xref(“temp table”,”1”,<ln>,<fn>)
      output(“ln”,”fn”)=1
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Good Stuff – SET operations

● UNION, INTERSECT, and EXCEPT
– INTERSECT isn’t too hard either; iterate the first table, 

populating output, iterate second table, copy each 
found element to output2, yield from output2



36

Good Stuff – SET operations

● UNION, INTERSECT, and EXCEPT
– EXCEPT can be simulated by deleting each value 

from output found in the second table
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Good Stuff – OUTER JOIN

● LEFT JOIN and RIGHT JOIN are OUTER JOINs
– Consider LEFT JOIN; select all elements from table 1 

and their corresponding elements in table 2, or if no 
such elements exist, a bunch of nulls

– This can be done using SET operations!
– (table1 INTERSECT table2) UNION (table1 EXCEPT 

(table1 INTERSECT table2))
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Optimizing the good stuff

● INNER JOIN, NATURAL JOIN are basically CROSS 
JOINs with conditions
– We already saw an equijoin optimization
– We can simply apply those to get JOINs that have no 

more cost than joining a single table
– How do we handle conjunctions (AND)s?
– How do we handle disjunction statements (OR)s?
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Optimizing the good stuff

● INNER JOIN, NATURAL JOIN are basically CROSS 
JOINs with conditions
– We already saw an equijoin optimization
– We can simply apply those to get JOINs that have no 

more cost than joining a single table
– How do we handle conjunctions (AND)s?
– How do we handle disjunction statements (OR)s?
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The Hard Problem

● Optimizing SQL queries is NP-hard
● We use heuristics to try and limit the scope of our 

search
– Conveniently, storing the metadata for these 

heuristics looks almost identical to the way we store 
cross indexes

– We are still working on this
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