
When NoSQL isn’t
enough, SQL is too

much

Charles Hathaway

April 28, 2019

2

Outline

● Why NoSQL?
● Why SQL?
● How to SQL?

3

What is SQL?

● Structured Query Language
– What data to get, not how to get it
– Ubiquitous for databases until NoSQL hit the streets

in 2010’s
– Uses a relational schema; stores data in tables, tables

can be related to each other, as indicated by a ‘key’
on the database

4

What is SQL?

● Databases which rely on SQL as the primary means for
accessing their data
– Oracle
– MySQL
– Postgres
– MS-SQL
– Most SQL implementations are more-or-less uniform,

with a standards committee

5

What is SQL?

● Key statement types
– SELECT – Get data from the database
– INSERT – Put data into the database
– DELETE – Remove data from the database
– UPDATE – Update data in the database

● The most interesting is SELECT

6

What is SQL?

● SELECT statements look like:
– SELECT <select list> FROM <source> WHERE <condition>

GROUP BY <columns to group by> HAVING <conditions of
the group by> ORDER BY <columns to order by>

– <source> can be a:
● Table/View
● SELECT statement
● JOIN statement

7

What is SQL?

● Joins are how we relate tables to each other
– The most simple join is a “CROSS JOIN” which:

● Creates a new table of size M x N, M is the number of
rows in the first table and N is the number of rows in
the second table

– Most other joins are CROSS JOINs with conditions
● INNER JOIN, NATURAL JOIN

8

What is SQL?

● Joins are how we relate tables to each other
– OUTER JOINs are the other type of join

● LEFT, RIGHT, and FULL OUTER JOINs
● Ways of fetching all data from one table, and empty

data sets from another table
● Often uses set operations (UNION, INTERSECT,

DIFFERENCE) to construct resulting tables

9

What is SQL?

● WHERE <condition>
– Conditions on the rows we select from the database
– Boolean expressions, which can contain arithmetic

and functions
– Can contain subqueries (additional SELECT

statements)

10

What is SQL?

● Summary
– You specify what you want, and where you want it

from
– The SQL engine decides how to fetch the data

● !! This is a hard problem!

11

What is NoSQL?

● Databases that don’t require SQL statements are
called NoSQL databases
– YottaDB
– MongoDB
– Redis

12

What is NoSQL?

● Often requires the users to think about how to fetch
the data, with unique API’s for each system

● Often has unique structure to how data is stored;
hierarchical, JSON/BSON, graphs

● Designing the schema for a NoSQL database has a
very different process than designing for a SQL
database; a lot more thought about how

13

What is NoSQL?

● YottaDB is a NoSQL database
– Data is stored as a hierarchy of key-value data
– i.e., [“people”, “sanchez”, “rick”, “alive”]=”?”
– Very good for data which has hierarchy
– Where in SQL you would have a related table, you

instead represent it as a “subscript” of the parent key

14

Why NoSQL?

● Performance.
– NoSQL has much less overhead in simple operations
– Programmers have total control over execution, and

therefore total control to utilize “meta data”
– i.e., I know that there are many Rick Sanchez’s, so

searching ones alive might be hard. Therefore, I
maintain a cross reference of known alive people

15

Why NoSQL?

● Generally, less-strict schema definitions
– A blessing and a curse
– Allows for easily adding items to the schema
– Storage is different than storing tables consisting of

rows; in some cases, this can save space

16

Why NoSQL?

● In YottaDB’s case, extremely fast transaction
processing
– With less overhead, committing “sets” of operations is

more straightforward
– Less overhead in tracking touched data

17

Why SQL?

● Separation of concerns
– Let the database people focus on making the

database fast; let the application developers focus on
making their application work

● Consistency of interfaces
– As mentioned, SQL has a fairly regular syntax across

vendors, with some small exceptions

18

Why SQL?

● Tooling
– Lots of tools connect to SQL engines and understand

how to parse the results
● Business Intelligence
● Data Warehousing

– Adapters for every major programming language on
the market

– Well-defined language API’s

19

SQL for NoSQL?

● Critics of NoSQL predicted we would be writing SQL
engines for our NoSQL databases
– They were right
– Consider projects like nosqlbooster, Data Virtuality, rediSQL
– And they’re cocky about it (http://www.redbook.io/all-

chapters.html)
● “Declarative queries have returned as the primary interface to

big data, and there are efforts underway in essentially all the
projects to start building at least a 1980’s-era optimizer”

20

SQL for NoSQL?

● YottaDB wants SQL access too!
– Customers have interest in the tools
– We have some unique things we can use which are in-line

with recent literature in the area

● Octo
– SQL engine for accessing YottaDB datastores
– Not-yet-released; early alpha state
– Written in C, open to contributions

21

How to SQL

22

Octo design

● 3 main phases
– Parse expressions (we use a YACC/Bison parser)

● Once the expression is normalized, see if we can reuse a
previously generated execution plan

– Initial optimization pass
● Resolve tables, columns, and order loops

– Physical planning
● Generate data structures that pretty much map to our

compiled routines

23

Octo design

● Running the query
– Each SQL query gets transformed to a series of M

programs
– YottaDB knows how to compile M programs to object

code, performance is very reasonable
– Currently, everything is executed in a single process;

near term, we will add in ‘JOB’s to allow parallel
evaluation where possible

24

Thinking about queries

● YottaDB stores data as a hierarchy
– ^people(“sanchez”, “rick”)=”alive”
– How do we represent this as a relational schema?

● CREATE TABLE people (firstName VARCHAR KEY
NUM “0”, lastName VARCHAR KEY NUM “1”, alive
VARCHAR);

25

Thinking about queries

● YottaDB stores data as a hierarchy
– ^people(“sanchez”, “rick”)=”alive”
– How do we represent this as a relational schema?

● 3 basic operations we must perform
– Fetching data
– Iterating ordered data
– Storing data

26

Thinking about queries

● CREATE TABLE people (firstName VARCHAR KEY
NUM “0”, lastName VARCHAR KEY NUM “1”, alive
VARCHAR);

● How do we query against this table?
– YottaDB provides ways to fetch data (get), set data

(set), and iterate over nodes (subscript_next)
– Some data is part of the “key” component here

27

Thinking about queries

● CREATE TABLE people (firstName VARCHAR KEY
NUM “0”, lastName VARCHAR KEY NUM “1”, alive
VARCHAR);

SELECT * FROM people
FOR firstName in people

FOR lastName in people(firstName)
yield (firstName, lastName,

people[firstName][lastName])

28

Thinking about queries –
Optimizations (equi join)

● SELECT * FROM people WHERE lastName =
“Sanchez”
lastName = “Sanchez”

FOR firstName in people(lastName)
yield (lastName, firstName, people[lastName]

[firstName])

29

Thinking about queries –
Optimizations (equi join)

● What about if we condition our query on something
that isn’t a key?

● SELECT * FROM people WHERE alive = “true”
● Option A: order over every row in the database, and

only select those where alive = “true”
● Option B: construct a cross reference, and order over

that instead

30

Thinking about queries –
Optimizations (equi join)

● SELECT * FROM people WHERE alive = “true”
● Cross reference looks like xref(“<table name>”,”<xref

key>”,.. keys for table)
● i.e. xref(“people”,”true”,”sanchez”,”rick”)

FOR fn in xref(“people”, “true”)
FOR ln in xref(“people”, “true”, fn)

yield

31

Good Stuff - JOINs

● This is where we do the relational bit of relation
databases

● Let’s create a new table
– CREATE TABLE morty(id INTEGER PRIMARY KEY,

rickLastName VARCHAR, rickFirstName VARCHAR,
alive VARCHAR)

– rickLastName and rickFirstName are keys from the
people table

32

Good Stuff - JOINs

● Let’s fetch the rick-morty pair
– SELECT * FROM people p1 CROSS JOIN mortys m1
– Render as:

FOR fn in people
FOR ln in people(fn)

FOR id in morty
yield (...)

33

Good Stuff - JOINs

● Let’s fetch the rick-morty pair
– SELECT * FROM people p1 CROSS JOIN mortys m1

WHERE p1.firstName = m1.firstName
AND p1.lastName = m1.lastName

– Render as:
FOR fn in people FOR ln in people(fn)

mln = ln; mfn = fn;
yield

34

Good Stuff – SET operations

● UNION, INTERSECT, and EXCEPT
– UNION is easy; just combine the output of two

statements and remove duplicates
– In YottaDB, we can maintain an output key and only

add something to it if it doesn’t exist
– To get ordering correct, we can use a cross reference

● i.e. xref(“temp table”,”1”,<ln>,<fn>)
 output(“ln”,”fn”)=1

35

Good Stuff – SET operations

● UNION, INTERSECT, and EXCEPT
– INTERSECT isn’t too hard either; iterate the first table,

populating output, iterate second table, copy each
found element to output2, yield from output2

36

Good Stuff – SET operations

● UNION, INTERSECT, and EXCEPT
– EXCEPT can be simulated by deleting each value

from output found in the second table

37

Good Stuff – OUTER JOIN

● LEFT JOIN and RIGHT JOIN are OUTER JOINs
– Consider LEFT JOIN; select all elements from table 1

and their corresponding elements in table 2, or if no
such elements exist, a bunch of nulls

– This can be done using SET operations!
– (table1 INTERSECT table2) UNION (table1 EXCEPT

(table1 INTERSECT table2))

38

Optimizing the good stuff

● INNER JOIN, NATURAL JOIN are basically CROSS
JOINs with conditions
– We already saw an equijoin optimization
– We can simply apply those to get JOINs that have no

more cost than joining a single table
– How do we handle conjunctions (AND)s?
– How do we handle disjunction statements (OR)s?

39

Optimizing the good stuff

● INNER JOIN, NATURAL JOIN are basically CROSS
JOINs with conditions
– We already saw an equijoin optimization
– We can simply apply those to get JOINs that have no

more cost than joining a single table
– How do we handle conjunctions (AND)s?
– How do we handle disjunction statements (OR)s?

40

The Hard Problem

● Optimizing SQL queries is NP-hard
● We use heuristics to try and limit the scope of our

search
– Conveniently, storing the metadata for these

heuristics looks almost identical to the way we store
cross indexes

– We are still working on this

Section Title

🤞🤞🤞🤞Subtitle

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

